The Escherichia coli S2P intramembrane protease RseP regulates ferric citrate uptake by cleaving the sigma factor regulator FecR
نویسندگان
چکیده
Escherichia coli RseP, a member of the site-2 protease family intramembrane proteases, is involved in activation σE extracytoplasmic stress response and elimination signal peptides from cytoplasmic membrane. However, whether RseP has additional cellular functions unclear. In this study, we used mass spectrometry–based quantitative proteomic analysis to search for new substrates that might reveal unknown physiological roles RseP. Our data showed levels several Fec system proteins encoded by fecABCDE operon (fec operon) were significantly decreased an RseP-deficient strain. The responsible uptake ferric citrate, transcription fec controlled FecI, alternative sigma factor, its regulator FecR, single-pass transmembrane protein. Assays with expression reporter demonstrated proteolytic activity essential citrate–dependent upregulation operon. Analysis using FecR protein FecR-derived model undergoes sequential processing at membrane participates last step generate N-terminal fragment FecI. A shortened construct was not dependent on activation, confirming cleavage sufficient role study unveiled E. performs proteolysis novel regulating iron citrate transport system. While bacterial membranes act as barrier protect cell extrinsic damages caused various xenobiotics hazardous changes environmental conditions, they must mediate only selective import nutrients other small molecules but also transduction signals external milieu adapt changes. variety mechanisms exist transmit information across Among them, regulated (RIP) crucial mechanism conserved among all kingdoms (1Brown M.S. Ye J. Rawson R.B. Goldstein J.L. Regulated proteolysis: control bacteria humans.Cell. 2000; 100: 391-398Abstract Full Text PDF PubMed Google Scholar, 2Wolfe Intramembrane proteolysis.Chem. Rev. 2009; 109: 1599-1612Crossref Scopus (90) Scholar). RIP, class proteases called (IMPs) (TM) signaling through target proteins. IMPs are unique membrane-integrated have their active site located within lipid bilayer catalyze classified into four families: (S2P; zinc metallopeptidase), rhomboid (serine protease), presenilin/signal peptide peptidase (aspartyl Rce1 (glutamyl protease) (3Sun L. Li X. Shi Y. Structural biology proteases: Mechanistic insights S2P γ-secretase.Curr. Opin. Struct. Biol. 2016; 37: 97-107Crossref (26) 4Beard H.A. Barniol-Xicota M. Yang Verhelst S.H.L. Discovery proteases.ACS Chem. 2019; 14: 2372-2388Crossref (5) cleave thereby play diverse including responses, development Alzheimer’s disease, induction apoptosis, maintenance mitochondrial homeostasis, invasion apicomplexan parasites, quality pathogenicity (5Deu Proteases antimalarial targets: Strategies genetic, chemical, therapeutic validation.FEBS 2017; 284: 2604-2628Crossref (34) 6Kühnle N. Dederer V. Lemberg M.K. glance: From signalling degradation.J. Cell Sci. 132jcs217745Crossref (9) 7Schneider J.S. Glickman Function pathogens.Biochim. Biophys. Acta. 2013; 1828: 2808-2814Crossref 8Konovalova A. Søgaard-Andersen Kroos development.FEMS Microbiol. 2014; 38: 493-522Crossref (40) one most well-studied members proteases. first identified key factor regulates single membrane-spanning anti-σE protein, RseA (9Kanehara K. Ito Akiyama YaeL (EcfE) activates pathway anti-σE, RseA.Genes Dev. 2002; 16: 2147-2155Crossref (202) 10Kanehara Characterization yaeL gene product S2P-protease motifs coli.Gene. 2001; 281: 71-79Crossref (62) 11Alba B.M. Leeds J.A. Onufryk C. Lu C.Z. Gross C.A. DegS participate sequentially activate σE-dependent response.Genes 2156-2168Crossref (254) response, accumulations misfolded outer lipopolysaccharide biosynthesis intermediates envelope cues induce DegS, membrane-anchored serine protease, periplasmic side (site-1 cleavage). This triggers following RseP-catalyzed second inside (site-2 cleavage), leading liberation domain complexed σE. Finally, degradation such ClpXP genes (12Kroos Biochemical structural metalloprotease mechanisms.Biochim. 2873-2885Crossref (30) 13Ades S.E. Regulation destruction: Design response.Curr. 2008; 11: 535-540Crossref (131) prerequisite subsequent Similarly, known after preceding trimming substrate protease(s). been shown eliminate remnant generated during translocation presecretory would contribute (14Saito Hizukuri Matsuo E.I. Chiba S. Mori H. Nishimura O. Post-liberation catalyzed (S2P) bacteria.Proc. Natl. Acad. U. 2011; 108: 13740-13745Crossref (45) homologs (or proteases) many gram-negative gram-positive processes (7Schneider They include production sex pheromones Enterococcus faecalis (15Dunny G.M. Enterococcal pheromones: Signaling, social behavior, evolution.Annu. Genet. 47: 457-482Crossref (67) Scholar), sporulation Bacillus subtilis (16Yu Y.T.N. Evidence SpoIVFB type governing intercompartmental communication sporulation.J. Bacteriol. 182: 3305-3309Crossref (52) acid Salmonella enterica (17Muller Bang I.S. Velayudhan Karlinsey Papenfort Vogel Fang F.C. Acid serovar Typhimurium.Mol. 71: 1228-1238Crossref (39) mucoid conversion alginate overproduction Pseudomonas aeruginosa (18Delgado Florez Lollett I. Lopez Kangeyan Kumari Stylianou Smiddy R.J. Schneper Sautter R.T. Smith D. Szatmari G. Mathee Protease MucP can overcome mutations AlgO restore nonmucoid revertants.J. 2018; 200: e00215-e00218Crossref (6) cholera toxin Vibrio cholerae (19Pennetzdorfer Lembke Pressler Matson Reidl Schild allowing rapid adaptation conditions.Front. Cell. Infect. 9: 214Crossref acquisition Bordetella bronchiseptica P. (20Draper R.C. Martin L.W. Beare P.A. Lamont I.L. Differential regulators controls cell-surface aeruginosa.Mol. 82: 1444-1453Crossref (37) 21King-Lyons N.D. K.F. Connell T.D. Expression hurP, encoding prospective 2 heme-dependent bhuR bronchiseptica.J. 2007; 189: 6266-6275Crossref (18) spans times both N terminus C facing space. residues third TM segments constitute (22Feng Yan Wu Z. Wang Jeffrey P.D. Structure metalloprotease.Science. 318: 1608-1612Crossref (170) 23Koide Maegawa Environment region assessed site-directed cysteine alkylation.J. 282: 4553-4560Abstract (28) central between contains tandemly arranged two PDZ domains (PDZ tandem) (24Li B. Feng Kang Qi Cleavage requires carboxyl-terminal hydrophobic amino cleavage.Proc. 106: 14837-14842Crossref (47) 25Inaba Suzuki K.I. pair circularly permutated coli.J. 283: 35042-35052Abstract (0) Scholar) amphiphilic helix presumably proper positioning tandem (26Miyake T. Involvement membrane-bound discrimination binding RseP.Front. 2020; 607381Crossref (1) generally single-spanning II (NIN-COUT) topology. We previously proposed bulky acts size-exclusion filter prevent access large (25Inaba 27Hizukuri Oda Tabata Tamura-Kawakami Oi R. Sato Takagi Nogi structure-based noncanonical intramembrane-cleaving RseP.Structure. 22: 326-336Abstract According model, DegS-cleaved form lost (leaving ~30 a. C-terminal tail), full-length (FL) RseA, pass (remnant YqfG (28Akiyama Mizuno Roles membrane-reentrant β-hairpin-like loop cleavage.eLife. 2015; 4e08928Crossref Scholar)) be explained because formers precursor secretory around surface leader peptidase, required whereas latter intrinsically very (~12 a.) domain. share no detectable homology primary sequences, suggesting does recognize specific sequence motif(s) segment cleavage. Mutational stability helical structures important determinant susceptibility 29Akiyama Kanehara (YaeL), RIP cleaves sequences.EMBO 2004; 23: 4434-4442Crossref (128) Consistently, apparent homology. diversity RseP/S2P makes it difficult predict potential simple sequences It thus reasonable assume still unidentified plays some cleaving these substrates, more comprehensive approach needed employed achieve above objective. Proteomic powerful technique identify reported (30Began Cordier Březinová Delisle Hexnerová Srb Rampírová Kožíšek Baudet Couté Galinier Veverka Doan Strisovsky Rhomboid YqgP licenses adaptor FtsH AAA protease.EMBO 39e102935Crossref (7) 31Tsumagari Shirakabe Ogura F. Ishihama Sehara-Fujisawa Secretome elucidate metalloprotease-dependent ectodomain shedding glycoproteins neuronal differentiation.Genes Cells. 237-244Crossref 32Arends Thomanek Kuhlmann Marcus Narberhaus vivo trapping label-free proteomics.Proteomics. 3161-3172Crossref 33Saita Nolte Fiedler K.U. Kashkar Saskia A.V. Zahedi R.P. Krüger Langer PARL mediates Smac maturation mitochondria promote apoptosis.Nat. 19: 318-328Crossref (64) found accumulation considerably (34Braun Mahren Ogierman Fecl-type ECF signalling.Curr. 2003; 6: 173-180Crossref (116) 35Braun Transmembrane transcriptional (surface signalling) type.FEMS 2005; 29: 673-684Crossref (55) receives dedicated (36Härle Kim Angerer Braun Signal transfer three compartments: Transcription initiation surface.EMBO 1995; 1430-1438Crossref (117) 37Angerer Enz Ochs Transcriptional regulation K-12. Fecl belongs subfamily σ70-type factors respond stimuli.Mol. 18: 163-174Crossref 38Enz Crosa J.H. dicitrate-transport coli: Similarity promoters fecA function factors.Gene. 163: 13-18Crossref (50) 39Ochs Surface FecI supports transcription.Mol. Gen. 1996; 250: 455-465PubMed periplasmically processed (40Ochs Veitinger Weiz citrate-dependent Fecl.Mol. 15: 119-132Crossref (86) 41Van Hove Staudenmaier Novel two-component control: dicitrate K-12.J. 1990; 172: 6749-6758Crossref 42Welz Ferric Functional regions regulatory protein.J. 1998; 180: 2387-2394Crossref which produces tail having “pro-sigma” 43Braun Hantke Tat-dependent secretion.J. 202e00058-20Crossref These results uncover details citrate–induced conditions coli. For understanding coli, attempted approach. expected enable us find direct whose result compared fractions prepared ΔrseA ΔrseP mutant strain expressing WT or proteolytically inactive (a Glu-23 Gln alteration (E23Q) metallopeptidase motif, HE23xxH) plasmid. Although rseP growth, deleted absence functional rseA strains, constitutively activated thus, exclude possible resulting RseP-dependent response. strains grown mid-log phase L broth containing 1 mM isopropyl-β-D-thiogalactopyranoside (IPTG), inducer plasmid-encoded derivatives, subject nanoLC/MS/MS analysis. As result, 13,815 derived 1419 (E. K-12). proteins, 17 exhibited significant (p < 0.05) increase, 41 decrease samples RseP(E23Q)-expressing RseP(WT)-expressing (Table Table S1). Gene ontology enrichment DAVID (44Huang D.W. Sherman B.T. Lempicki R.A. Bioinformatics tools: Paths toward lists.Nucleic Acids Res. 1-13Crossref (8810) 45Huang Systematic integrative lists bioinformatics resources.Nat. Protoc. 4: 44-57Crossref (22148) former included groups related TonB box receptor beta strand, (Fold Enrichment > 10, S2). [CyoE (heme O synthase (46Saiki Mogi Anraku Heme cyoE cytochrome BO encodes protoheme IX farnesyltransferase.Biochem. Commun. 1992; 1491-1497Crossref (75) 47Saiki vitro heme synthesis 1993; 268: 26041-26044Abstract Scholar)), AmtB (ammonium transporter (48Soupene He Kustu Ammonia enteric bacteria: Physiological ammonium/methylammonium B (AmtB) protein.Proc. 95: 7030-7034Crossref (142) ZupT (heavy metal divalent cation (49Grass Wong M.D. Rosen B.P. R.L. Rensing Zn(II) 184: 864-866Crossref (123) 50Grass Franke Taudte Nies D.H. Kucharski L.M. Maguire M.E. permease broad spectrum.J. 187: 1604-1611Crossref (147) Scholar))], fold change greater than (Fig. 1). accumulated under condition, unlikely top group FecA, FecD, FecE, 2. system, systems induced availability iron. indicates should responses (e.g., HurR (21King-Lyons FpvR FoxR (51Bastiaansen K.C. Otero-Asman J.R. Luirink Bitter W. Llamas M.A. Processing anti-sigma prior recognition autoproteolytic domains.Environ. 17: 3263-3277Crossref (16) HxuR, HasS (52Otero-Asman García-García A.I. Civantos Quesada J.M. possesses distinct sensing host molecule haem.Environ. 21: 4629-4647Crossref (10) putida IutY (53Bastiaansen Ibañez Ramos Prc activity.Environ. 2433-2443Crossref (21) further examined involvement expression.Table 1Significantly changed (p-value depending RsePLog2 (E23Q/WT)-Log10 p-valueGene namesProtein namesLocationUpregulated 2.203.80cyoEProtoheme farnesyltransferaseIM 1.542.94amtBAmmonia channelIM 1.141.55zupTZinc ZupTM 0.851.73ycfJUncharacterized YcfJM 0.631.67fiuCatecholate siderophore FiuOM 0.621.65hdeBAcid chaperone HdeBPeri 0.611.76osmBOsmotically inducible lipoprotein BM 0.582.01mdtAMultidrug resistance MdtAIM 0.571.85cirAColicin I receptorOM 0.551.41wzcTyrosine-protein kinase wzcIM 0.521.38glnBNitrogen P-II 1- 0.481.56yjiYInner YjiYIM 0.461.46rsePRegulator sigma-E RsePIM 0.461.49fepAFerrienterobactin 0.441.72yqiCUncharacterized YqiCCyto 0.441.77zntALead, cadmium, mercury-transporting ATPaseIM 0.392.18mdtBMultidrug MdtBIMDownregulated −3.304.15fecDFe(3+) FecDIM −3.274.42fecAFe(3+) FecAOM −1.803.90fecEFe(3+) ATP-binding FecEIM −0.762.06yeeRInner YeeRIM −0.721.76znuAHigh-affinity ZnuAPeri −0.711.39fluAntigen 43; Antigen 43 alpha chain; chainPeri −0.691.47sucDSuccinyl-CoA ligase [ADP-forming] subunit alpha- −0.641.39yaaAUPF0246 YaaA- −0.581.34putABifunctional PutA; Proline dehydrogenase; Delta-1-pyrroline-5-carboxylate dehydrogenase- −0.561.51cstACarbon starvation AIM −0.541.48truBtRNA pseudouridine B- −0.501.48purNPhosphoribosylglycinamide formyltransferase- −0.481.32rluBRibosomal −0.441.50accAAcetyl-coenzyme carboxylase carboxyl transferase alphaCyto −0.441.62ycbXUncharacterized YcbX- −0.431.39thrSThreonine--tRNA ligaseCyto −0.431.45thiItRNA sulfurtransferaseCyto −0.411.48gltACitrate synthase- −0.411.45sodBSuperoxide dismutase [Fe]- −0.401.78hrpAATP-dependent RNA helicase HrpA- −0.401.48rneRibonuclease ECyto −0.392.19pepPXaa-Pro aminopeptidaseCyto −0.391.51serCPhosphoserine aminotransferaseCyto −0.391.71ybeDUPF0250 YbeD- −0.391.64selBSelenocysteine-specific elongation factorCyto −0.381.44degPPeriplasmic endoprotease DegPIM −0.351.41tehBTellurite methyltransferaseCyto −0.351.38gmhAPhosphoheptose isomeraseCyto −0.341.70oppFOligopeptide OppFIM −0.331.42uvrAUvrABC ACyto −0.311.34rlmJRibosomal l
منابع مشابه
Ferric citrate transport of Escherichia coli: functional regions of the FecR transmembrane regulatory protein.
Transcription of the ferric citrate transport genes of Escherichia coli is induced by ferric citrate bound to the outer membrane receptor FecA. Additional ferric citrate-specific regulatory proteins are FecR in the cytoplasmic membrane and the FecI sigma factor in the cytoplasm. To further understand the assumed FecR-mediated signal transduction across the cytoplasmic membrane, the transmembran...
متن کاملSubstrate recognition and binding by RseP, an Escherichia coli intramembrane protease.
Escherichia coli RseP belongs to the S2P family of intramembrane cleaving proteases. RseP catalyzes proteolytic cleavage of the membrane-bound anti-sigma(E) protein RseA as an essential step in transmembrane signal transduction in the sigma(E) extracytoplasmic stress response pathway. RseP cleaves transmembrane segments of membrane proteins, but the molecular mechanisms of its substrate recogni...
متن کاملSites of interaction between the FecA and FecR signal transduction proteins of ferric citrate transport in Escherichia coli K-12.
Transcription of the fecABCDE ferric citrate transport genes of Escherichia coli K-12 is initiated by a signaling cascade from the cell surface into the cytoplasm. FecR receives the signal in the periplasm from the outer membrane protein FecA loaded with ferric citrate, transmits the signal across the cytoplasmic membrane, and converts FecI in the cytoplasm to an active sigma factor. In this st...
متن کاملRseP (YaeL), an Escherichia coli RIP protease, cleaves transmembrane sequences.
Escherichia coli RseP (formerly YaeL) is believed to function as a 'regulated intramembrane proteolysis' (RIP) protease that introduces the second cleavage into anti-sigma(E) protein RseA at a position within or close to the transmembrane segment. However, neither its enzymatic activity nor the substrate cleavage position has been established. Here, we show that RseP-dependent cleavage indeed o...
متن کاملPost-liberation cleavage of signal peptides is catalyzed by the site-2 protease (S2P) in bacteria.
A signal peptide (SP) is cleaved off from presecretory proteins by signal peptidase during or immediately after insertion into the membrane. In metazoan cells, the cleaved SP then receives proteolysis by signal peptide peptidase, an intramembrane-cleaving protease (I-CLiP). However, bacteria lack any signal peptide peptidase member I-CLiP, and little is known about the metabolic fate of bacteri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biological Chemistry
سال: 2021
ISSN: ['1083-351X', '0021-9258', '1067-8816']
DOI: https://doi.org/10.1016/j.jbc.2021.100673